34 research outputs found

    Performance study on Ca-based sorbents for sequential CO2 and SO2 capture in a bubbling fluidised bed

    Get PDF
    High temperature CO2 and SO2 sequential capture in a bubbling fluidised bed was investigated using a natural limestone and synthetic composite pellets. Calcination was conducted under oxy-combustion conditions, while carbonation and sulphation occurred in an air-combustion atmosphere. The goal of sequential capture of CO2/SO2 is to desulphurise the flue gas first, followed by cyclic carbonation and calcination. Here, fresh sorbent is first used in the cyclic calcination/carbonation process and then the spent sorbent is sent for sulphation. The pellet carrying capacity is 0.29 g CO2/g sorbents for the first cycle, while that of natural limestone is about 0.45 g CO2/g sorbents. The carrying capacity first fell and then finally plateaued around 0.10 and 0.12 g CO2/g sorbents for limestone and pellets respectively. The SO2 carrying capacity for limestone and pellets after 20 cycles of CO2 capture was 0.17 and 0.22 g SO2/g sorbents respectively. This indicates that the sorbent spent in CO2 capture can be effectively reused for SO2 removal. Abrasion was observed to be the main mode of attrition, but some agglomeration was also found with increasing number of cycles and this may be a concern in the use of Ca-based sorbent for CO2 or SO2 fluidised bed capture

    Removal of emulsified oil from water by fruiting bodies of macro-fungus (Auricularia polytricha).

    No full text
    The aim of this study was to investigate the feasibility of utilizing the fruiting bodies of a jelly macro-fungus Auricularia polytricha as adsorbents to remove emulsified oil from water. The effects of several factors, including temperature, initial pH, agitation speed, and adsorbent dosage, were taken into account. Results showed that the optimized conditions for adsorption of A. polytricha were a temperature of 35°C, pH of 7.5, and agitation speed of 100 rpm. The adsorption kinetics were characterized by the pseudo-first order model, which showed the adsorption to be a fast physical process. The Langmuir-Freundlich isotherm described the adsorption very well and predicted the maximum adsorption capacity of 398 mg g-1, under optimized conditions. As illustrated by scanning electron micrographs, the oil particles were adsorbed onto the hairs covering the bottom surface and could be desorbed by normal temperature volatilization. The material could be used as an emulsified oil adsorbent at least three times, retaining more than 95% of the maximum adsorption capacity. The results demonstrated that the fruiting bodies of A. polytricha can be a useful adsorbent to remove emulsified oil from water

    A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes

    No full text
    CaO-based regenerative sorbents for CO2 capture in power generation and H2 production are receiving growing attention. A major challenge for this technology is the decay of sorbent activity with increasing number of the sorption/regeneration cycles. Evaluation of long-term sorbent activity currently requires substantial experimental work. In this study, the dependence of the activity on the number of sorption/regeneration cycles is examined, and the apparent dependence on the number of cycles is related to the duration of sorbent regeneration. By relating the decay in activity of the sorbent to its decrease in surface area due to sintering, interesting insights can be drawn. A method for determination of the long-term activity has been proposed, which can greatly reduce the experimental work for sorbent development and process evaluation.CO2 capture Solid sorbents Long-term or residual activity

    Preparation and characterization of lime/coal ash sorbents for sequential CO2 and SO2 capture at high temperature

    No full text
    Extensive research has been done on Ca-based sorbents as a promising way to capture CO2 and SO2 from power plants. Considerable effort has also been directed toward maintaining sorbent activity by means of sorbent modification to deal with activity decay with repeated CO2 capture cycles. Based on the principle of “treating waste with waste” and inspired by the idea that a pozzolanic reaction can enhance the surface area, this paper presents a method of hydrothermal synthesis of lime and coal ash. A small amount of CaSO4 or NaOH was added during the hydration process and the mixture was stired for several hours at about 90oC. The synthesized samples were then characterised by scanning electron microscopy, nitrogen adsorption/desorption spectroscopy and X-ray diffraction. The activity of the synthesized sorbent for CO2 and SO2 capture were then tested in a thermogravimetric analyser. The treated samples demonstrate longer-lasting performance for CO2 cyclic capture, albeit with a slightly reduced capture ability compared to pure lime in the first few cycles due their lower CaO content (25~81% versus 98%). The sample with lime/ash mass ratio of 45:5 showed higher CO2 capture ability after three cycles and much greater stability in terms of their activity. The main product of the pozzolanic reaction is CaSiO3, which has a network structure, whose development is related to the ratio of CaO/coal ash, hydration duration and the amount of CaSO4 and NaOH additives. After high temperature calcination, a new phase, namely Ca3Al2O6 is believed to serve as a skeleton preventing sintering in repeated capture cycles. After experiencing multiple cycles, the synthesized sorbents also have a high SO2 capture capacity. A small amount of added NaOH decreases the cyclic CO2 carrying capacity of the synthesized sorbent but enhances SO2 carrying capacity dramatically. The explanation for this is that the sulphation reaction is controlled not only by gas diffusion but also by solid-state ion diffusion. Na+ ions generate more crystal lattice defects which can accelerate the ion diffusion rate in the product layer, and consequentially enhance overall SO2 carrying capacity

    Fitting results of the kinetic and isotherm models to adsorption data of emulsified oil by <i>A. polytricha</i>.

    No full text
    <p>Fitting results of the kinetic and isotherm models to adsorption data of emulsified oil by <i>A. polytricha</i>.</p

    Scanning electron micrographs of <i>A. polytricha</i> lower surface (A) before oil adsorption, (B) after oil adsorption, and (C) after thermal volatilization desorption; and upper suface (D) before oil adsorption, (E) after oil adsorption, and (F) after thermal volatilization desorption.

    No full text
    <p>Scanning electron micrographs of <i>A. polytricha</i> lower surface (A) before oil adsorption, (B) after oil adsorption, and (C) after thermal volatilization desorption; and upper suface (D) before oil adsorption, (E) after oil adsorption, and (F) after thermal volatilization desorption.</p
    corecore